CLN3 Batten disease is a lethal pediatric neurodegenerative disease caused by mutations in the CLN3 gene. Typically, the disease manifests as vision loss in early childhood and progresses to neurological dysfunction and death in young adulthood. Most therapeutic developments have focused on treating the brain and may not protect against vision loss, which greatly affects quality of life. We have previously shown that a splice-switching antisense oligonucleotide (ASO) delivered to the central nervous system can reduce neurological disease burden in mouse models of CLN3 disease. Here, we apply a similar ASO approach for treating retinal dysfunction in a pig model of CLN3 Batten disease, which is more representative of human vision. A single intravitreal injection of ASO induces robust exon skipping in the retina for up to 12 months. The ASO treatment resulted in higher amplitudes on electroretinograms, suggesting mitigation of retinal dysfunction at early timepoints of disease. One ASO that efficiently induces exon skipping in vivo was well-tolerated and targets a region conserved in humans, making it a promising candidate for clinical translation. Our findings demonstrate the utility of an ASO-based approach to treat retinal dysfunction in CLN3 Batten disease and support broader ASO applications for treating ocular diseases
Therapeutic antisense oligonucleotide mitigates retinal dysfunction in a pig model of CLN3 Batten disease
Journal:
Nucleic acids research
Publication Date:
Nov 11 2025
Pubmed ID:
